Search results for "line intensities"
showing 6 items of 6 documents
Preliminary analysis of CH3D from 3250 to 3700 cm(-1)
2006
International audience; The infrared spectrum of CH3D from 3250 to 3700 cm(-1) was studied for the first time to assign transitions involving the nu(2) + nu(3), nu(2) + nu(5), nu(2) + nu(6), nu(3) + 2(nu 6) and 3 nu(6) vibrational states. Line positions and intensities were measured at 0.011 cm(-1) resolution using Fourier transform spectra recorded at Kitt Peak with isotopically enriched samples. Some 2852 line positions (involving over 900 upper state levels) and 874 line intensities were reproduced with RMS values of 0.0009 cm(-1) and 4.6%, respectively. The strongest bands were found to be nu(2) + nu(3) at 3499.7 cm(-1) and nu(2) + nu(6) at 3342.5 cm(-1) with integrated strengths, respe…
The high-resolution far-infrared spectrum of methane at the SOLEIL synchrotron
2010
International audience; As a tetrahedral molecule, methane has no permanent dipole moment. Its spectrum, however, displays faint absorption lines in the THz region, due to centrifugal distorsion effects. This is important for planetary applications since this region is used to measure methane concentration in some planetary atmospheres, in particular on Titan. Up to now, all measurements relied either on some old low resolution infrared absorption spectra, or on high resolution Stark measurements for low J values only. Even if these results have been reexamined recently [E. H. Wishnow, G. S. Orton, I. Ozier and H. P. Gush, J. Quant. Spectrosc. Radiat. Transfer 103, 102-117 (2007)], it seeme…
Global analysis of the high resolution infrared spectrum of methane 12CH4 in the region from 0 to 4800 cm-1
2009
International audience; We report the global analysis of methane (12CH4) lines from high resolution rovibrational spectra including accurate line positions and intensities in the region 0–4800 cm−1. This covers four polyads: The Ground State Monad (rotational levels), the Dyad (940–1850 cm−1, 2 vibrational levels, 2 sublevels), the Pentad (2150–3350 cm−1, 5 vibrational levels, 9 sublevels) and the Octad (3550–4800 cm−1, 8 vibrational levels, 24 sublevels) and some of the associated hot bands (Pentad−Dyad and Octad−Dyad). New Fourier transform infrared (FTIR) spectra of the Pentad and Octad regions have been recorded with a very high resolution (better than 0.001 cm−1 instrumental bandwidth,…
Equivalent widths for 6 RS CVn systems
2003
Photospheric parameters and abundances are presented for a sample of single-lined chromospherically active binaries from a differential LTE analysis of high-resolution spectra. Abundances have been derived for 13 chemical species, including several key elements such as Li, Mg, and Ca. Cone search capability for table J/A+A/412/495/stars (Stars studied)
CS 29497-004 abundances
2017
We report an abundance analysis for the highly r-process-enhanced (r-II) star CS 29497-004, a very metal-poor giant with solar system Teff=5013K and [Fe/H]=-2.85, whose nature was initially discovered in the course of the HERES project. Our analysis is based on high signal-to-noise ratio, high-resolution (R~75000) VLT/UVES spectra and MARCS model atmospheres under the assumption of local thermodynamic equilibrium, and obtains abundance measurements for a total of 46 elements, 31 of which are neutron-capture elements. As is the case for the other ~25 r-II stars currently known, the heavy-element abundance pattern of CS 29497-004 well-matches a scaled solar system second peak r-process-elemen…
Activity and accretion in {gamma} Vel and Cha I
2015
We use the fundamental parameters (effective temperature, surface gravity, lithium abundance, and radial velocity) delivered by the GES consortium in the first internal data release to select the members of Gamma Vel and Cha I among the UVES and GIRAFFE spectroscopic observations. A total of 140 Gamma Vel members and 74 Cha I members were studied. The procedure adopted by the GES to derive stellar fundamental parameters provided also measures of the projected rotational velocity (vsini). We calculated stellar luminosities through spectral energy distributions, while stellar masses were derived by comparison with evolutionary tracks. The spectral subtraction of low-activity and slowly rotati…